Variable Selection and Model Choice in Geoadditive Regression Models
نویسندگان
چکیده
منابع مشابه
Variable selection and model choice in geoadditive regression models.
SUMMARY Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable...
متن کاملVariable Selection and Model Choice in Structured Survival Models
In many situations, medical applications ask for flexible survival models that allow to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. These structured survival models are very flexible but additional difficulties arise when model choice and variable selection is desired. In particular, it has to be decided which covariates should be assigned timevar...
متن کاملVariable Selection for Regression Models
A simple method for subset selection of independent variables in regression models is proposed. We expand the usual regression equation to an equation that incorporates all possible subsets of predictors by adding indicator variables as parameters. The vector of indicator variables dictates which predictors to include. Several choices of priors can be employed for the unknown regression coeecie...
متن کاملVariable Selection for Multivariate Logistic Regression Models
In this paper, we use multivariate logistic regression models to incorporate correlation among binary response data. Our objective is to develop a variable subset selection procedure to identify important covariates in predicting correlated binary responses using a Bayesian approach. In order to incorporate available prior information, we propose a class of informative prior distributions on th...
متن کاملEstimation and Variable Selection in Additive Nonparametric Regression Models 1
Additive regression models have been shown to be useful in many situations. Numerical estimation of these models is usually done using the back-tting technique. This iterative numerical procedure converges very fast but has the disadvantage of a complicated`hat matrix.' This paper proposes an estimator with an explicit`hat matrix' which does not use backktting. The asymptotic normality of the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrics
سال: 2008
ISSN: 0006-341X
DOI: 10.1111/j.1541-0420.2008.01112.x